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1. Introduction. Let £¢[0,1], 0 <a<b <1, and denote by
N(M, & a,b) the number of integers k,1 <k < M, for which o < {£ &)}
<< b. ({¢} denotes the fractional part of ¢). Our main result gives a criterion
for the boundedness of

(1.1) R(M, £ a,b) = N(M, £ a, b)—M(b—a).

This is stated in _
THEHEOREM 4. For 0 <a <b <1,b—a <1 and fized & R(M, E, a,b)
18 bounded in M if and only if

(1.2) b—a = {j&}  for some integer j.

It was known for a long time (cf. [6], [10]) that (1.2) is a sufficient
condition for the boundedness of R and the result that (1.2) is also neces-
sary confirms a recent conjecture of Erdios and Sziisz [2].

Throughout this paper we shall make heavy use of continued fraction
expansions in the following notations:

The regular continued fraction of an irrational()(?) £e(0,1) is
denoted by s

[y (8), as(8), ...] = ——

02 (8) F —=

as(E) ...

* Alfred P. Sloan Fellow.

(1) We shall ignore rational &s most of the time. They form a set of measure
zero and therefore do not influence the metrie result in section 3. Also they constitute
& trivial cage for theorem 4. . )

(?) We use the notation of Chapter 10 of [5] except that we drop a.(£) = [£]
from our formulae, since a,(§) = 0 in all our considerations.
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194 H. Kesten

and its nth convergent by Pn(£)/gn(£). One has then the well-known
recursion formulae ([5], chapter 10)

(1.3) Go=1, =0, G = Gnprfnta-1,

(1.4) Po=0, Pr=1, Duy = OnpPatPa1.

We introduce also

(1.5) (l;,+1 = 0:;;_,_1(5) = %.+1+[afn+27 Ay oo .

] a,n41_|.. R
e

and

J: q e
(1.6) Qn+1 = ‘1n+1(5 = Op1GntGner = Grg1+ o 2
a’mz et

As in Ostrowski [9], one can expand N a8

m,E)

(L.7) = Dat= D &, Oalé)
(0

where

0 <o <y, Cmvg >0, and Zoiélt < i1
. =

for 0<j<m(l, 8.

Such an expansion exists and is uniquely determined by these conditions
(see [9] and [11, part I, p. 464]). The letter m will be reserved for the
(finite) upper bound m (N, &) in (1.7). When no confusion is likely we do
not write the arguments N and & Note that ¢,, is the last denominator
of a convergent of £, which does not exceed N.

To prove theorem 4 we begin with a detailed study of the N intervals
into which [0,1] is divided by the points {k&}, & = 1,..., N. We shall
always identify the points 0 and 1 and accordingly consider [max {% &}, 1]
v [0, min{%k £}] as one interval so that the N points divide [0, 1] into N
rather than N1 subintervals. The lengths and relative location of these
subintervals are desembed by theorem 1 and corollary 1 in terms of the
quantities ¢;, ¢u, gnsy and O Corollary 1 once more confirms a con-
jecture of Steinhaus that, for each N, subintervaly of only three different
lengths occur. This conjecture was proved before by Surényi [18], by
means of the Farey series Fy. Fy is the sequence of rational numbers

jlk, with 0 <j <k <N and (j, k) =1, arranged in agcending order.
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‘When Surinyi’s result is combined with theorem 1, one obtains the
following amusing result:

THEOREM 2. Let £ be an wrrational number such that jifky < & < jofks
where §, [k, amd jo [k, are successive members of Fy. Then, for

J1 Jids .
J1 B m = m(N is even
k1<5<k1+k2’ (N, &) ,
(1.8) gm = Gmw (&) = ky,
(1.9) Gm—y = kyg— [:Z] ky, (here we define ¢, = 0),
1
and
Ja 1
1.10 Eo i =
( ) ks GmQmy1
If ;11—]; < é< k— then m s odd,
(1.11) 9m = ko,
ky )
(1.12) Q1 = ky— T ko,  provided ky> 1,
2
and )
j 1
(1.13) ELN .
ky QmGm+1

As a byproduct of these results we derive a metric result concerning
the maximal gpacing between. the points {k £}.
TeEOREM 3. Let

Ly (£) = max ({k, &} —{k. £})

where the mamimum 148 over all pairs Ky, %y with 1 <k, by < N, {k, £}
< {k, &} such that there is no 1 < ky < N with {ky £} < {k:s£} < {k2£}. Con-
sistent with the identification of 0 and 1 we also include the pair

{k, &} = max {k&},  {ky£} = min {ké}
‘lgkasN LSk N

in which case {ley & —{k; £} is 10 be replaced by 1—{k, £}+{k,&}. (Roughly
speaking, Ly iz the maximum distance between adjacent points {ké&},
1<k<N)
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~ Then(®),
lim [{¢: N Ly(8) <o}l =

0 if =<l

1 -+ —
w2 t o8 wt— +
-1 —

1
— 9 t o
..];2. gt—1 @ (2 ) 12 flOgm dt 'bf 1 =5 o=, 2,

~1
= b ot @—1) 12
E f xt 110 2(2 )d

- | =log —— dit
2 t & wt—1 mc? g1 }
1z} 12
12 logat
el fﬁ%idl, if 2o
TI'.'Z

Theorem 3 is proved by the methods of Friedman and Niven [4]
and Erdes, Sziisz and Turédn [3] who also used Farey series. The author
has used those techniques elsewhere [7] to derive the limiting distribu-
tion (*)

Lm|{&:0 < & <1, NV min|ké—af < x}.
Neooo 1<h<N

in case @ = 0. It seems that the techniques of the present paper axe strong
enough to treat the case of general « but the computations become too
complicated to be carried out.

2. The successive values of {k£}. A large part of the information in
this section can be found in, or derived from, V. 868 [11] and [12]. It is
more convenient though, to give direct derivations here, which are adap-
ted to the needs in section 4. Throughout this section N and & will be
fixed, £ irrational. ¥ will be expanded as in (1.7) and m will stand for

m (N, £). As before the points 0 and 1 will be identified. ¢.., is defined as
Zero.

THEOREM 1. Hach interval (1—, i
Im Gm

),r = 0,1, ..., g1 contains

exactly one point {kE} with 1 <k < qm. Denote the point in (-L Li)

m qm
by P, and the interval [P;, P,yy) by J, in case m is even. If m 48 odd, let Py

be the point in (qz ,‘-;i) and J, the interval (Pp,Ppl. Then
m m : i

() 14| denotes the Lebesgue measure of the set 4.
*) ||ﬂ[| denotes the distance between f and the nearest mteger to 8.
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enaCtly Qm—Qm—y intervals J, have length q’" 1 and  eactly Qm-1 have
m-+1
am+1+1 : « .
length —————. Intervals of the first set are called “short” amd inter-
Qnt1

vals of the second set are called “long”. The long intervals are exactly those J,
for which(®) P, = {k&} with 1 <k < gn-y. The newt (Cm—1)gm poinis
(k8 gn+1 < T < Cmm, subdivide the intervals J, in such a manner that
exactly (c,—1) points fall in each J,, namely ot the points

(=1)"s

Pt —r—, s=1,2,...,0p1,7r=0,1,...,n—1.
It

These points divide each J, inlo Cm Sub-intervals. Sterting from P,

and the last interval,

, Cm+1 .
adjacent to P,.; and to be denoted by J,, has length M if J,

‘lm 41
’
Oy —Cm+2
s

1
the first cn,—1 subintervals of J, have length p
m+1

is short and length if J, is long. J, is called short or long

M1
when J, is short, respectively long. OFf the last N —cnqm points {k&}, tmgm
+1 <k <N, at most one will belong to each J,. If such a point belongs
(=1)"em

fms1

to J,, it is located at P,+ . Such a point therefore belongs to

Jr and divides J, into an interval of length adjacent lo the previous

gmt1

intervals of lenglh

p in J, (or adjacent to P, if cn=1) and an interval
m-+1
Jy, adjacent to P,,;. These last N —Cypgm points {k&} subdivide as many
long Ji as possible. I.e. if N—cmgm < gm_1 = number of long Jy, then
these points fall only in long Jp. If N—Cpndm > Gm-, then one such point
falls in each long J, and some points fall in a short Jy.

Proof. Only the case of even m will be considered, the case where
m is odd being entirely analogous(‘) By the well-known formula ([5],
chapter 10)

e
(2.1) PR i
% G+
(°) We slightly abuse notation and confuse Py with the va.lue of its coord.ma.te
in [0, 1]. This will often be done in the sequel.
(°) Some special considerations are necessary when m = 0, which corresponds -
to the case 0 < & < (¥-+1)~L However, it is easy to see that the theorem remains
valid in this case if one takes ¢i = a;, in agreement with (1.6). :
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we have for even m and 1 < < gm

pm_,l_}mﬁ_.~£~.
(2.2) (k) = {qm T onto] T tn |t

where o is defined by
(2.3) kpm = bp(modg,) and 0 < g < gn—1.

As % rung through the values 1,...,¢m, ¢z runs through the wvalues
0,...,¢m—1 since (Pm, ¢m) = 1. Moreover,

Qkﬂ-l)
(Im’

gince 0 < k/gnims1 < 1/gm. This shows that for each r =0, ..., gu~1.
exactly one point

(2.4) {M}(“

{LE}e(—L ’qil) with T=1,..., ¢

m

This point is called P, and the length of(") J, = [P,, Pyy) is

L Ar+1”—lr
Gn  Gmmi
if 4, is defined by
2.5) P, = {3,8) = —+
@) {48 Qm QM.QWH-X

This of course means that (for m even) 1, is the solution of
(2.6) Apm =r(modg,) and 1< <gn
Consequently

(}'r+1“')>r)pm = 1(mod gy).
When combined with the standard formula ([5] chapter 10)
(2-7) Pmmr—Pm—19m = (“1)m~17
this gives
* Aep1—2p = — Q1 (000G ) .
In view of 1 < A, < ¢, we finally conclude

(2.8) Tsieg =] Tm gy < A < Oy
° r1 Ay = .
In—9m 1< < gny-

(") In case j = gm—1, Py i identified with P,.
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In the corresponding cases one has

Gmi1—Gm1 _ Ui
’ - ’ 1
Gm G2 Im+1
(2.9) \Pyir—Pyl = "
am+1+1
Oms1

As stated in the theorem there are therefore g, —gm-, “short” intervals
and gn_, “long” intervals, the latter occuring if P, = {4, £} with 1 < 4,
< gm_1- The remaining statements concerning the subdivision of J,
are immediate now since, by (2.2) and (2.5),

(2.10) ((otsgm) £} = Pyt —— (P, ,ﬁ—l) cJ,
Qm+1 O

as long as A +8¢m < gmqa and thus in particular for 4 +sgm < ¥ < gy
The only part not yet proved so far is the statement that the points {k£}
With Cpgm-+1 <k < N first subdivide the long intervals Jy. This again
follows from (2.8), (2.9), and (2.10). In fact, k will be of the form cpngm-+4r
and {k&}eJ, for some r. The values of ¥ < ¢ngm—+gm-y correspond to
A < gm-1 and thus to the long intervals. These values of & precede the
ones corresponding to short intervals, namely those with k > ¢ngm+gm—1-

COROLLARY 1. Among the N intervals into which [0, 1] 48 divided by
the pointe {k&}, 1 <k < N, there are exactly
a;n+2

-1 Qm+2

Z Qi+ (em—1) @ = N —@u intervals of length

—1
If Z Ci; > Qm—1, then there are in addition

=0

m—1 ﬂ/' —c

2 CiQi—Qm_, imtervals of length milm

F=0 m+1

and

m—1

R a Cm+1

qm-l-q,,._l-——z 6ig; intervals of length M—-

=0 ‘lm+1

m—1

If, however, 2 € < Qm—1, then the additional intervals consist of

=0

m—1 a, ¢ —|—-1
Z CiQi-Gm—Qm-, intervals of length —Ttr"—.
i=0 Qm+1
and .
£ i";n+1“0m+2

Gm_1— 2 €0 z'nter'ua,ls of length

i=0 Q1
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Proof. This corollary is deduced from theorem 1 by cheekmg the
lengths of the various subintervals of J,. Clearly the points Pr-( —1)"s/gy,,.,,
§=1,2,...,b, divide the interval J, into b intervals of length 1/g,,,
and one mterval of length (amy1—b)/gmsy if J» is short or of length
(@1 +1—b)/gms1 if J, is long. The highest value b which occurs for s
depends on N —Cpgm. If N—0nQn = @m-1 = number of long J, then
b = oy, for all g, long intervals and for N —cygm~—gm-, short intervals,
whereas b = ¢,,—1 for the remaining ¢m—gmn...— (¥ —Cmgm—gm—,) short
intervals. This gives the right number of intervals of the various lengths
i N—Cpim = @10 If N—0pQm < g, the counting argument: is uite
similar.

COROLLARY 2. If m is even, then

) 1
(2.11) min {k€} = {gné} =——
1<k<N Imet1
and

gy —C,
{(@n-14-Omgm)é} = 1— 'ﬂ:,“:l““"ln
Qupefer

§ 1 Onlm < N

(2.12) max {kf} = f dmes , mm y

1<kaN N

{gmes+ (on—1)gn) &) = 1 Fmrr L0
Gm1

¥ Gmer+Ongm > N.

If m is odd, then

{(gm—1tCmm) 5} M
m-i-l

(213)  min (k&) = ¥ gnatongm <N,

1<k N ’ 1
{{gmos(om—1) g} §) = L2 tL =0
q'm+1
i Gme1FOmgm > N,
and
1
(2.14)  max {kf} = {gné} = 1 — -,
KKN{ } te ) Qmt1

Moreover, (*)
(2:15)  min 1] = g ] = L
1<k m+1

Proof. Asan example we prove (2.12). The other formulae are proved
in the same manner. For m even, Ao, 1 = gm-, because of (2.6) and (2.7).
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Thus the point P, in ((¢n—1)/0m; @n/lw) equals {g, ,&} and J, _, is
“long”. The largest value of {k&} is therefore achieved for k = g,,_1+bgy,
where b is the maximal value for which g,_;+4-bgns < N (cf (2.10)). Again
by (2.7), and (1.6),

1 kb . i—
(G +Va) £ = 1= . Ty D
Im G Gm-+1 Ima1

This is indeed the value given in (2.12).
CoROLLARY 3. The maximal spacing Ly (&) is given by

(2.16) Ly(&) = 1— max {k&}+ min {k&}.
1SN 1<k<N

In other words the mazimal interval between adjacent points {k&} is the
interval containing 0 (and 1). (For a precise definition of Ly, see theorem 3
in the introduction.)

Proof. By corollary 1,
a';n+1_'cm+l
In@e) ={ ,
a’m+1"“0m+2
9':n+1
One immediately verifies from (2.11)-(2.14) that the value of 1—max {kf}

1<k N
+ min {k&} always agrees with this.
I<ksN

We now quote a result of Surdnyi [13].
THEOREM (Surdnyi). If £ is drrational and j, [k < & << jy/ks where
Jalky amd jofk, are successive members of Fu, then

(2.17) wmin {k&} = {k, &} ond max{ké} = {k &},
1Sk<N 1<k N

it N—cndm > Qu_1,

if N—Cngm < gm—1-

‘When we combine this with corollary 2 we obtain theorem 2 of the
introduction.

We proceed with the proof of theorem 2. For ¥ = 1, the theorem
is trivial and we may assume N 3 2. For irrational &, min {kE} and
max {%£} occur for unique values of k. Oompa;nson of (2. 11) (2 14) with

I<k<N
(2.17) shows that either

(i) m is even, ¢, =k, and g¢n_,+ [N———_—g’f———l]qm = Ky
N m
or

(i) m is 0dd, gm =k, and gn_,+ [%] G = Ty
m
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If case (i) prevails, then

0 < gm-1 = k,—integral multiple of by < g, = I,

. /]
Im-1 == 152""‘ [%‘j‘] kl

and in case (ii) the same argument with &, and %, interchanged is valid.
(Only for (1.12) we have to rule out ¢m.. = ¢m, Which can oceur only
Hgn=gnai=1Lm=1¢n=1Fk)

Since j, k7" and j,k;' are consecutive elements of Fy with N 3 2,
one has ([56], Chapter 3) &y, # k, and

and therefore

o L
(2.18) jabi—jiby =1 and %W%“HK
Thus
(2.19) 0< -2t < ~—1— < min | §— L

kv kykyg Iy

where the minimum is over all jk{'eFy with j 5= j,. The last inequality
is obvious from the first two inequalities in (2.19) if %, > 2. But &y = 1
can oceur only for j,k;" = 1 and then for § < j,—1 (2.19) is again obvious,
whereas jki' > k3" = 1 is impossible. Since by (2.1)

1 1 1

7 —

Inmir  Ngm  2¢4]

we conclude from (2.19) that in case (i) p, must be j, and then, again
by (2.1), (1.10) must hold. A similar argument is valid in case (ii) and it
is only necessary to check which of the alternatives (i) or (ii) prevails for
a given ¢. For this we refer to (2.15) and (2.20) which show that in case (1)
one must have

lam £l = kl(fii) <=l = (2
kl 7E

2
e

(2.20) ’§-gﬁﬁ
Im

or equivalently
Jitia
Tor ey
In case (ii) the inequalities have to be reversed. Thig completes the proof
of theorem 2.
3. The distribution of the maximal spacing between points {k&}.
We give here the
Proof of theorem 3. Put

W(N, 2) = {£: NLy(&) < o).
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If
Ja Ja
(3.1) < £ < :
where j,k;* and jyk;* are successive members of Fiy (and hence & 7 k.
if N > 2 by theorem 31 of [5]), then by (2.18) and (2.19)
a8 = (6 2]
1
and
j2 1 jl
- — (2 ) = 2 ke~ 2H).
1) = k(g —¢] = s )
Therefore, by corollary 3 and Surdnyi’s theorem,

Ly(8) = kl(e~f—1) +k2(?i —s)
31 2

whenever (3.1) holds. Using (2.18) once more, one has

Ji Js gy, gy, N) i Ey > ks,
(3.2 IWN.’I? (—— ——) :{ .
) W) o Tl T gy by, ) 8 B> B,
where
. 1 2 1)\t 1
(3.3) g(ky, ko 2, N) :mm(kl—kz(nﬁ—%:) 7@)

(¢* stands for max(0, ¢)). Consequently, for N > 2,

—

(8.4) W, ) = D (s, ks, 3, )

1<ky<ley <N 71,79

+ Y D gl by, N).
1<k <ko<N 1,72
where the sum over j,, j, is over those pairs jy , j,, for-whieh j; bt <okt
are congecutive elements of Fy. It was proved by Friedman and Niven
[4] (see also [3]) that there exists exactly one such pair jy, j, if

(3.5) (ky, ko) =1 and  k+ky>N.

Otherwise there is no such pair. Thus

N
W, o) =23 D gl ke, )
Fg=1 N—ko<ky<hy
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where X’ is only over those &, with (&, %,) = 1. When (3.3) is substituted,
this becomes

@ 1 i 1
R N N

maix (3, ) <kyety N—ly<hy o
9 2‘1 1 2“1’ 1
* NN s N Ty
max (im., T)<k2<N max (lecz, ~£.)<I¢1-{;,;Ir2

For # < 1 the sums are empty and |W(N,)| = 0. For 1 <o <2 we
obtain by means of lemma 2 of [8]

o 1\ (k) 2ky—~N
36 WHa =2 (—ﬁ—kQ)—kaulogmkz__Nw_l
%<kZ<N
1 Bk Ty A (k)
+2 Z T Wy g0 NZ Tl |
% <kygN 5 <la<N

Here, as in [8], &() is Euler’s function and d(k,) = number of divisors
of k,. Just as in the proof of theorem 1 of [8] the error term in (3.6) tends
to zero as ¥ — co and @ (k,)/k, in the sums in (3.6) may be replaced by
its “average value” 6/x? One therefore obtains

1 1
12 1 2t—1 12 r1 '

z—1
The last case, where # > 2, is treated in & similar manner.

4. Criterion for boundedness of R(M, & a,b). This section is
devoted to the proof of theorem 4. The fact that

(41) ‘ b—a == {k&}
implies
(4.2) ' \R(M, & a, b)| < O(k)

for some constant ¢ and all M > 0 was proved by Hecke [6] and Ostrow-
8ki [10]. (The precise value of O(k) is not important here. Ostrowski
gives C(k) = |k| but this can be improved for most £'s.) We therefore
only have to prove that (4.1) is a necessary condition for (4.2). Except
for a glight modification this was conjectured by Erdos and Sziisz ([2],
P. 61). For £ rational it is not difficult to see that boundedness of R(M,
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& a, b) implies that b = {k&} for some & In the sequel & will therefore
e assumed to be a fixed irrational number. By a result of Bohl ([1],
p. 226) the boundedness in M of R(M, &, a, b) for a given £ depends only
on b—a and not on a and b separately. It therefore suffices to take a = 0
and 0 < b <1 and for ghortness we write R(M,b) for R(M,§,0,d).
We want to approximate b by points of the form {k£}, in particular we
ghall want a good approximation of this form with k < gu = ¢a(§) for
each n. For this purpose we apply theorem 1 with N = ¢,. In this case
m(N, & = n and theorem 1 states that exactly one point {££} with k < ¢n
belongs to (rgy’, (r--1)gy"). This point was denoted by P, if » is even
and by Py, -1 if n 18 odd. In agreement with (2.3) A, denotes the unique
positive integer not exceeding gy for which :

(4.3) P, = {A£}.

It will be necessary in this section to indicate that P, and 2, depend on n.
Accordingly we shall denote them by P{® and A". Similarly we shall
write J™ for the interval J, introduced in theorem 1. For each n, there
is a unique 7, such that (%)

M, pM it n is even
() e i A

(P, PE)Tif m is odd.
To avoid cumbersone notatior we shall use the following abbreviations:

(4.5) Ty =J, Pn) =P, An)=A).

We now congider the multiples {(4(n)-+dg,) &} for which A(n)+ags < gn+1s
d=0,1,... We always have, by the definition of A(n)

(46) - AN < tn-
I ﬁ(n)‘\{ gy then the values d = 0,1,..., Gy AT6 permisgable and
J(n) is a “long interval” (see theorem 1). If gn—; << 4(n) < ¢, only the

values d = 0,1, ..., @y, -1 are permissable and J'(n) isa “ghort interval”.
‘We put for » even,

(4.7) dn = largest permissable d for which {(1(n)+dg) &} <D.
For odd n, we define d, in the same way except for a reversal of the ine-

quality in (4.7). To fix attention assume that n is even. One merely has
to reverse most of the inequalities below to treat an odd n. We algo assume

(8) This argument is reminiscent of theovem 1 in’[ll] part TI.



206 H. Kesten

that 0¢J(n). Since 0 < b < 1, this holds for all sufficiently large n. Under
these circumstances we have, by (4.3) and (2.10)

d
(4.8) {(l(n)+d4n) ‘E} = _P(’I’b) + =
i In+1
and the definition of d, therefore implies
dy, 1
(09) (A0 Fat &) = Pw)+ ~ < b < P() 2
n1 Gt

= {(Z ('"‘) “(dy 4-1) Qn) 5}
whenever d, -1 is still a permissable value, i.e. if 2(n)-(d, ~+~1)q,,‘:;= Tnyr
This is certainly the case if
(4.10) dy < Qpyr—2

which we shall assume for the time being. From now on we also aggume
that b is not of the form {k&} for some integer k. The inequalities in (4.9)
are then strict. Following an idea of Ostrowski [9], we shall now construct
a sequence of M’s, defined in terms of d, and ¢, for which R(M, b) is
unbounded. To begin with we take

(4.11) My, == (dp+1) g,

which is less than ¢,,, because of (4.10),.and estimate R(M,, b). Since
bed (n) = JE) and n even, one has

0 <P <P <. <P <b<PP,<.. <Py,
Consequently

(4.12a) JP = [0, ) it i<,
(4.12b) IOA[00) =0 i r<i<g-2,
1
120 I A0 = 10,2 = [0, 1),
Qnt1

Among the d, g, multiples {5:£}, gn-+1 < & < (d,+1) ¢, there are by theorem
1 exactly d, in each interval J{". Therefore for each 0 < ¢ < 7, exactly
the (d,+1) points {k&} with 1 <k < (@n=+1) gy == M, which belong to
J{" also belong to [0, b), namely the points
a
PO4{dgnt) = PP+ ——, 0<d <dy.

N1

This is still true for ¢ = r(n) because of (4.9). For ¢ > r, no point in J™
belongs to [0, #). This is obvious for 7, < 4 < gn—2 from (4.12b). For
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i = gu—1 it follows from (2.10) with g,—1 substituted for r. These data
prove

(4.13) C N (M £0,8,) = (1) (1),
On the other hand, by (4.3) and (2.6)

()P Am) } Iy l(fb)
an Gnn In  Gnlnia
and (4.9) and (4.6) therefore imply

To M)t Ta | dat?

(414) P(n)={A(n)&} = {

(4.15) b <

Gn | Gnnsr  Gaar On - Gng1
Combining this with (4.13) and (1.6) we obtain
(4.16) R(M,,b) = N(M,, &0, b)—M,b
dn+1
> ——((an1—n—2) Gn )
ot
dn+1
>— (an“ —2+ - )
am+1‘|’2 an+z‘|‘1
It is easy to conclude from this
(4.17) R(Mn7 b) = 2—8_’
whenever
(4.18a) 0<dy <y —3
or
(4.18b) 0<dy=0,,—2 and ap, <6

Because of the assumption that b = {k&} for all k there exists an &, > 0
such that the number of 1 < k < M, with 0 < {e-+k¢} < b = N(M,, § 0, b)
whenever |g| < e,.

In particular this holds for

e={ 3 aut]

Tn+s
whenever ¢; mtegml, lej] < aj4; and s sufficiently large, say s > . In
fact,
1+1 1 4 3—(n4-8)/2
{23797 } 2]61|{Q1‘5} Z—é < 2%
jonts ISt Qf+1 il Onis
since

Qiva = 2!11-
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‘We therefore obtain for |e;| < ay.q, 8 = 8,

(4.19) N(y}%’s &5+ M, £, 0, b)-N(/)%;aejqf, £0,b)

= mumber of 1 <k < M, with 0 <{ 3 6,615} < b

fanta
= N(M,, & 0,0).

Assume now that for infinitely many even n (4.18a) or (4.18b) holds,
We can then select a subsequence {n;} for which (4.18a) or (4.18b) holds
and such that
Mg t8n; K Mgy
By (4.19) we have then for
i

11
M= 3 My = 3 (Ao, +1) s

te=1 =1
4 ¢

(4.20)  N(M, £, 0,0) =Z(N( > Mo+ M,, £ 0,0)

i=1 imfFl

i i
~N( 3 Moy 6,0,0)) = SN (M, £,0,0)
el

t=it ]

and, by (4.17) ‘
t
t
R(M,b) = = —
(I 6) = 3R (M, b) > 7
Since ¢ can be taken arbitrary latge, we see that R is unbounded if (4.18)

‘holds for infinitely many even #. The same conclusion is valid if (4.18)

holds for infinitely many odd ». From now on we may assume therefore
that for n > =,

(4.21a) 0 < apy—1 <d, < [
(since d, < @y, by definition), or
(4.21b) 0<dy=a,,—-2 and Mg 22 T,

We now investigate closer what happens if (4.21b) holds for infinitely
many 7. For the sake of argument assume again that n > n, is even
and that (4.21b) holds. (4.9) (with gtriet inequalities) states

(4.22) {2 +augn) &) < b < {(A(1)+(@0+1) ) £).
But

A(n) Fldngn < l(n)+(dn+l) In < Ont1Gn < Qnire
Moreover, by theorem 1, there is no % < Qny for which

{(2(0)+-dngn) &} < (BE} < {(A(m) +(dn+1) ga) £} -
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In other words,
P = {{A(n)+duga) &} and P = {(A(n)+(dn+1)ga) &}

are two adjacent points among the P{"Y, Thus according to (4.4), (4.5),
and (4.22) we must have (n+1 is odd)

J(n+1) = (P, P"'],
(4.23) P(n+1) =P = {(2(n)+(dn+1)gn) £},
AnA4-1) = A(n)+(dn+1) gn-

The analogue of one half of (4.9) at the (n41)st stage becomes (rvecall
that (n+41) is odd)

Ay dp+1  dyy
b < {(Mn+1)+dniignia) &} = P(n+1)— o = P(n)+ ";+ —
Q2 Gn+1 nte

1f we now substitute d, = dy.,—2 and use the fact that d,y, = 4y ,~2
since n+41 = n > n,, we obtain in the same manner ag in (4.15)

b < n + g1~ (. 1-2—2)/“n+2
an i1
‘With
Mn == (%+1"1)9n

as in (4.11), (4.13) remains valid and (4.16) can now be sharpened to

R(M,, b) > S0 Sa 2 o 18
On1 2 Opys 4 8
gince any; = d,,+2 > 2 and a,., > 7. As before we derive from this that
B (M, b)is unbounded if (4.21b) occurs infinitely often. Thus if R is bounded
we may assume that (4.21a) holds as soon as n exceeds a certain n,. We
proceed to limit the possibilities for d, still further. Assume that n > ny
and that
(4.24a) dy = Gpyy
or
(4.24b) d, = a4,—1 and J(n) is “short” (i.e. A(n) > gu_1)-
(assumption (4.10) is dropped now). In both cases d, has the maximal
permissable value of d for which A(n)~+d¢, < ¢n.,. Let n be even again.
(4.9) now has to be replaced by
(4.25) {(A(n) +angn) &} < b < PRy = (A0, 8}
since P{’,, is the right-hand end point of J(n) and there is Do % < gu4:
with
{(M(n) +dngn) &) < {BE} < (A48}

Acta Arithmetica X112
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The argument which led from (4.22) to (4.23) now shows that

(4.26a) J(n+1) = [{(l n "}'dnqrn)f} {l 115}1
(4.26D) P(n+1) = PPy, = (M. £},
(4.26¢) Mn41) = A < g

The last inequality follows from the definition of A{™ (see (4.3)) and will
be crucial for our argument. In particular it implies that J(n--1) is
a “long interval” and A(n-+1)4tnir@nsr € Grie- Since n > ny, ngt
can only take the values a,,,—1 and ..

If we assume
(4.27) Angy = Gnys—1,

the analogue of (4.9) at the (n-1)st stage is

(4.28)  P(nA41)+{(dnsr+1) guyn &} = P(n+1)— 42 g

Ont2

21
P(n+1)+{dns1@us1 &} = P{n-1)— -l_‘i.-._."

Qs
§ince dyy,+1 = a,,, is"a permissable value for d and n--1 i8 odd. In
turn this implies
P(n42) = P(n- +1) "|'{an+"q'n415_}
and finally

. a. gy —1
(429) 5> P(n+2)+{dnysgniad} = Pln1)— -2 202770
Qnte n4s
sinee dyyp 2 Gpys—1 for n+2 =0 > n,.

Because (compare (4.14))

P(n-+1) =P7(‘:ii) - {l(n-}—l)f} _ Qi1 i1 _ M”’"‘F]l)
Qne1 Gn19ne
we obtain from (4.29) and (4.26¢)

Int1~"ny1  Gu-+a, ) Gpgy—1
(4.30) b nt1 Ao 11.+an1+1 _ 'rb»i,'l )
Gnt1 Gnt1qnr2 s
— 1 nq1 e f‘n+a"‘l 1 ]
Dnt1 Qn1 q;u+2 “;w-n qim ‘

Under these circumstances we chooge

. Moiy = Qi oGnis,
and claim that

(4.31) N{Mpyy, & 0, b) = an+2(qn+1-—m+1 —1).
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Indeed none of the points P(n—+1)+{¢gn.: £}, ¢ < tyea—1, will belong
to [0, b) by the second inequality of (4.28). In each interval J{**" with
Pop1 <7 < @uy1—1 there will be exactly an., points {k&}, kb < Mypn,
by theorem 1, and all of them belong to [0,)) and none of the points
(k&) in J& with r < 7,4, belong to [0, ). (This argument is merely
a repetition of the proof of (4.13), now with an odd index). From (4.30)
and (4.31) we conclude

Aty * Ong3Gna1 iz [
R(Mn»i-la b) < — 7 7 < - 5
Unts " Qoo Appg+2 Qg1

As Dbefore this can only happen a finite number of times if E(M, b) is
to remain bounded and therefore (4.24) and (4.27) together can ouly
happen a finite number of times. Thus if R remains bounded we may
assume that for every n = n,

ppy—1 < dy < Wiy

but both (4.24a) and (4.24D) fail or (4.27) fails. This only leaves the follow-
ing possibilities for d,, n = n,.

(i) dy = @y, Then (4.27) must fail and hence dyp,; = @py, and then
Apyi = Oppiyr TOr 42 0.

(i) dp = Gpp1—1 and J(n) is a “short interval”. Again (4.27) must
fail, hence dy,, == @y.. and then by case (i) dpi: = Gpyiqq Tor i > 1

({ii) dy, = apy;—1 and J(n) is o “long interval”. Then A(n)=+Gni1dn
< Qnyy a0A (4.9) is still valid. By the argument leading from (4.22) to
(4.23) we conclude that

J(n+1) = ({(A(n) +dngn) €}, {(H(m)+ (@r+1) )€}
which has length

.
1 Fnta

nE = =
{a 8} P

r
In+2

and is therefore a short J™V. At the (n+1)st step we are therefore in
case (i) or case (ii) and dy..; = @piepy for ¢ = 2.

The final conclusion is that if b is not of the form {k&}, then E(M,d)
can only be bounded if d, = @y, for n > ny = ny+2. However, as Te-
marked before (4.7), dy, = @4, can oceur only if J(n) is a long interval
and in addition it was proved in (4.26) that d, = a,,, implies

P(n+1) = P, = P{4(—1)" - length of J,

’
Qpy1+1
—_—— =

Ins1

= Pm)+(~1)" Pn)+{g0 ) —{gas )+ (1"
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Iteration of this formula shows
W1

P@) = Plu)+ 3 ({8 — (@1 D) H4 (=1 —4(-1)"

=g
= (A1) €} + (g1 &} — {dng- 1§+ (1) 4 (1)
and therefore (see (4.4))
b =1m P(n) = {A(ns) &} —{Gug1 &1+ L4 (1)) = {(A(0) = ttngr) €]

N—>00

which is after all of the form {k¢}. Thus B(M, b) cannot be bounded unless
(4.1) holds,.
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